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Mark R. Dowling"?, Dejan Milutinovi¢® and Philip D. Hodgkin™'
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In cell lifespan studies the exponential nature of cell survival curves is often interpreted as
showing the rate of death is independent of the age of the cells within the population. Here we
present an alternative model where cells that die are replaced and the age and lifespan of the
population pool is monitored until a steady state is reached. In our model newly generated
individual cells are given a determined lifespan drawn from a number of known distributions
including the lognormal, which is frequently found in nature. For lognormal lifespans the
analytic steady-state survival curve obtained can be well-fit by a single or double
exponential, depending on the mean and standard deviation. Thus, experimental evidence
for exponential lifespans of one and /or two populations cannot be taken as definitive evidence
for time and age independence of cell survival. A related model for a dividing population in
steady state is also developed. We propose that the common adoption of age-independent,
constant rates of change in biological modelling may be responsible for significant errors,
both of interpretation and of mathematical deduction. We suggest that additional
mathematical and experimental methods must be used to resolve the relationship between
time and behavioural changes by cells that are predominantly unsynchronized.
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1. INTRODUCTION

Similar cells vary in their responses, even when placed
under identical environmental or stimulatory con-
ditions. This inherent variation presents a challenge
to the development of mathematical descriptions of cell
behaviour. Perhaps the most common strategy is to
treat the variation as an error and take the average
behaviour of the population as the ‘correct’ outcome.
A more realistic approach is to attribute cell differences
to some internal stochastic behaviour such that a rate
of change, for example likelihood to die, is constant over
time and therefore the survival curve is a decaying
exponential function. While the assumption that a rate
of change is constant is taken partly for mathematical
convenience, there are many experiments consistent, at
least superficially, with the projected exponential.
These include measurement of variations in pre-
replicative phases of cell cycle times (Smith & Martin
1973), loss of cells from the naive lymphocyte pool
(Fulcher & Basten 1994, 1997; Tough & Sprent 1994;
Tanchot & Rocha 1997), loss of plasma cells after an
immune response (Slifka et al. 1998), as well as cell
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death in vitro (Gett & Hodgkin 2000; Deenick et al.
2003).

One area where the assumption of time indepen-
dence has been common is in studies of lymphocyte
lifespan and proliferation. For example loss and
replacement of naive non-dividing lymphocytes in
blood or peripheral lymphoid organs can be followed
by labelling newly formed, and therefore recently
divided, cells with the Thymidine analogue Bromo-
deoxyuridine (BrDU; Osmond 1991). Curves showing
replacement of BrDU negative murine B cells are well
fitted by either one or two exponentials (Fulcher &
Basten 1994, 1997). Human T lymphocyte half-lives
have been estimated by loss of cells with permanent
chromosome damage following radiation exposure.
These curves are again well fit by one, or two,
exponentials (Mclean & Michie 1995; Ramalho et al.
1995). Similarly the half life of non-dividing antigen
specific plasma cells from bone marrow have also been
estimated using exponential decay (Slifka et al. 1998).
While the assumptions implicit in fitting exponentials
are not always stated in these studies, both Fulcher &
Basten (1997) and Tanchot & Rocha (1998) argue that
the exponential nature of the replacement curves is
indicative of time independent, stochastic processes
governing cell survival.

© 2005 The Royal Society
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Despite this success, recent rigorous quantitative
experimental analyses of cells triggered to either die or
to divide have revealed data that is inconsistent with
the simple exponential. In each case the variation is
better described by a time-sensitive, non-homogeneous
distribution similar to the lognormal (Deenick et al.
2003; Tangye et al. 2003; Hawkins et al. in preparation).
This result argues that the stochastic events governing
variation intrinsic to cells are not applied constantly,
but can in some way be timed, and presumably
regulated positively and negatively by incoming cell
signals.

There are many mathematical and philosophical
implications raised by changing from a time-indepen-
dent probability of change to a time and history
sensitive distribution such as the lognormal. An
important difference is the need to consider the age of
cells, or cell cohorts, over time. This led us to search for
novel mathematical results that may be useful for
studying age-sensitive systems. Given the more recent
experimental results favouring time-sensitive distri-
butions we wondered if the data supporting the fitting
of exponential functions could be accommodated within
a new framework, where cells have a determined
lifespan, and if so, whether experiments could be
devised to distinguish them. In solving the problem
we develop a general solution for equilibrium states and
apply it to a number of source distributions.

2. DYING POPULATION WITH EXTERNAL
REPLACEMENT

The system to be studied is illustrated in figure 1. Cells
are generated at an external source and used to replace
cells lost by attrition from a mature cell pool. We
initially ignore any homeostatic process, such as
division, for replacing cells outside of the generative
source. We assume that newly generated cells vary in
their lifetimes, [, with the distribution of lifetimes
denoted by L(I) and referred to as the source
distribution.

It is not important for our purpose to know why
lifetimes vary among cells, however we note two general
scenarios. In the first the age of a cell does not affect its
likelihood of dying; the rate of cell loss is constant for the
population, and ‘stochastic’ for the individual. This age-
independent model for cell death is analogous to atoms
undergoing radioactive decay and yields survival curves
that decay exponentially. The second is to assume that
cells have a lifespan capable of being determined at
birth. In this scenario cells undergo internal changes
that effectively act as a ‘clock’ that inexorably leads to a
cell dying at some point. Individual cells will vary in
lifespan according to some distribution (as in figure 1).
By this view external factors such as cytokines and
chemokines may also act on the lifespan clock to vary the
precise time to eventual death, and presumably con-
tribute variability to the lifespan of the population.
As an example T lymphocytes exported to the periphery
from the thymus (the generative source) have their
lifespan prolonged by low-level self-antigen recognition
(Kirberg et al. 1997; Tanchot et al. 1997; Nesic &
Vukmanovic 1998; Ernst ef al. 1999). As the exact form

J. R. Soc. Interface (2005)

(@ (b)
source Ul)lfetl me of cells made at source
of new cells 5
(e.g. thymus, %
bone marrow) S
c
0 lifetime
© (d) survival curve
pool of cells
(size kept constant) S

0 time

Figure 1. In the system studied, cells are generated at a source
(@) with a defined lifetime that follows a distribution such as
that shown in (). The cells are non-dividing. The pool of cells
(¢) is in continual flux as cells that die are replaced from the
source. We are interested in determining the survival curve
shown in (d). That is, at any time what fraction of the total
population, S(#), will remain alive at a time ¢ later?

of this lifespan variation is unknown we sought a general
solution here, but consider lognormal and gamma
distributions as candidate possibilities for lymphocytes.

The question we ask relates to the changes in
survival times of the cells in the mature cell pool: At
a given time what is the distribution for remaining
lifetimes in the population? We are particularly
interested to know if the corresponding survival curve
can be distinguished from the exponential function
usually applied. We also aim to calculate the current
distribution of total lifespans in the pool at any time,
which will be different in general from the source
distribution as longer-lived cells spend proportionally
longer in the pool.

The two characteristics of a cell that we need to
follow are its current age, a, and its pre-determined
lifetime, [, which we will refer to as the total lifetime for
clarity. We will find it more convenient to work with
the remaining lifetime, A = | — a, and total lifetime, [, as
the two cell variables, which clearly contain the age
information as well. We will be interested in how the
joint probability density p(4, [, t) of remaining lifetimes
and total lifetimes of the population evolves with time .
The probability density must be normalized at all times

J dAJ dip(A,1,t) = 1.
0 0

A cell’s remaining lifetime cannot be greater than its
total lifetime, therefore p(4, [, t) =0 when A> 1

The two marginal distributions of p(4, 1, ¢) give the
distribution of remaining lifetimes and total lifetimes in
the population, respectively

pa(s ) = J dlp(,1, 1),
0

(2.1)

(2.2)

(L t) = J: Aap(a, 1, ¢). (2.3)
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A common experiment in lifetime-distribution
studies is to monitor the fraction of survivors remaining
as the cells are allowed to die. We refer to the curve so-
obtained as the survival curve, S(t). The survival curve
is determined only by the distribution of remaining
lifetimes in the population

t

S(t) =1 _JO dAprl(’L t/)’

(2.4)

where tis measured from the time of interest, ¢'. We will
be particularly interested in what the survival curve
looks like in steady-state.

2.1. Age-independent model

Before presenting results for the full age-dependent
model we first study the simpler model where the rate of
death of cells is independent of their age. Let p be the
total number of cells in the population. Without
replacement cells die at a rate 1/7, where 7 is the time
constant, according to the differential equation

dp

— =— . 2.5
T (2.5)

The solution to this differential equation is
p(t) = p(0)exp(—t/7), (2.6)

i.e. the survival curve S(¢) = p(#)/p(0) is a decaying
exponential.

The age-independent model with constant death
rate is indistinguishable from an age-dependent model
where cell lifespans are determined at birth and
distributed according to an exponential distribution

L(1) = exp(=i/7)/T. (2.7)

To see this, we note that the exponential distri-
butions have the property of being memoryless (time-
insensitive), that is, if dying cells are not replaced the
distribution of remaining lifetimes of the remaining
cells is an identical exponential distribution. If the
dying cells are actually replaced from an external
source, the newly generated cells have lifetimes with the
same exponential distribution. Hence the distribution
of remaining lifetimes does not alter or mature over
time in time

pa(A) = exp(=A/7)/7, (2.8)
and the survival curve is always exponential
S(t) = exp(—t/7). (2.9)

2.2. Age-dependent model

We now derive results for the model described above in
which the lifespan of cells is determined at birth and
distributed according to some known distribution. If
that distribution is exponential we recover the age-
independent model with a constant death rate. How-
ever if the distribution is ‘time-sensitive’, i.e. not
exponential, the rate of death will depend on the
distribution of remaining lifetimes in the population,
and the survival curve can take forms other than the
exponential.

J. R. Soc. Interface (2005)

We begin by deriving a partial differential equation
that describes the evolution of the distribution of
remaining lifetimes, p.(4,¢). As noted above, this
marginal distribution is sufficient to determine the
form of the survival curve, which is often observed in
experiments. We will be particularly interested in the
circumstances under which the survival curve is similar
to or distinguishable from an exponential or double
exponential, thus providing insight into possible
experimental tests of our model.

Between time t and ¢+ At a proportion p(0, t)At of
the cells die (that is those that have between 0 and At
remaining lifetime). These are replaced by new cells
from the source with their total lifetime remaining. The
proportion of these new cells that have a remaining
lifetime between A and A+ A7 is L(A)AA. Those cells that
do not die reduce their remaining lifetime by At.
Mathematically this means that

pa(A t 4+ ADAA
= pa(0, )ALLOVAA + py(A + At AL (2.10)

In reality it may take a finite time for the drop in
population to be detected and the source to be
stimulated to produce new cells. However, we assume
these times to be relatively small compared with the
width of the source distribution and so to a good
approximation we may consider the replacement to be
continuous. In this limit we may expand both sides of
equation (2.10) in a Taylor series to first order in A¢ to
obtain a differential equation for p,(4, )

aprl(& t)
ot

= L(N)pn(0, )ALAL + pa(A, t)AA

pa(2, )AL + AtAX

aprl(la t)
——— > AtAA
+ aA
dpu(4,t) _ dpu (4, 1) 211
The boundary condition we impose is that

pa(A— o, t) =0, as is necessary for any probability
density.! An intuitive schematic for the evolution of the
distribution of remaining lifetimes under equation
(2.11) is shown in the electronic supplementary material,
section A.

After evolving for some transient time according to
the above differential equation, we expect the cell
population to settle down to some equilibrium or steady-
state distribution pfj (1) (independent of time). To find
this distribution we set 0p,/0t = 0 in equation (2.11)

apy(4)
ER

0= L(A)pii(0) +

A
= (1) = = (0) j aL(Y) + C,

'With this condition it is straightforward to check that
% fom dApy (2, t) = 0. In other words the differential equation conserves
normalization—if we start with a normalized probability density it
will remain so for all time. This is as expected since we derived the
equation by assuming all cells that die are replaced.
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Figure 2. Dying population with replacement from lognormal source distribution—m = 0.4 and s = 0.8. Initial (¢ =0

total lifetime (1)

solid

line), intermediate (¢ = 0.5—dot-dashed line) and steady-state (t— o —dashed line) curves are shown to illustrate the approach
to equilibrium. (a) Distribution of remaining lifetimes in the population, p,(4, t), where p, (4, ©) = pij (). (b) Distribution of total
lifetimes in the population, py (1, t), where py (4, ©) = pif ({). (¢) Survival curves, S(t), obtained from the corresponding remaining-

lifetime distributions of (a).

where C'is the constant of integration. Setting A = 0 we
see that C'= pj(0).

Finally, the requirement that pjj(4) be normalized,
5" dApi(2) = 1 determines p§j(0) = 1/u, where

u= J: da [1 —E dA’L(A’)] = J: dAAL(2),

is the mean of the source distribution. Therefore we
have

1= [ L(X)

pi(4) (2.12)
u

In steady-state, cells with a particular total lifetime,

[, will be completely unsynchronized in birth times, that

is their ages or remaining lifetimes will be uniformly

spread from 0 to . Therefore we expect the steady-state

distribution of total lifetimes to have the form

pin =" (213)
u

where the mean lifetime, u, serves as the normalization

of this marginal distribution as well.

In fact, it is possible to write a differential equation
to describe the evolution of the full distribution of
remaining lifetimes and total lifetimes, p(A, [ t), as
described in the electronic supplementary material,
section B. We are able to solve this full model in steady
state, which proves equation (2.13) and is consistent
with equation (2.12) for the marginal distributions.

From equation (2.13) it is clear that with the
population at steady-state the distribution of total
lifetimes is skewed towards longer lifetimes compared
with the source distribution. This is a general feature
that occurs independent of the particular source
distribution and is due to the fact that longer-lived
cells spend proportionally longer in the population
before dying.

We now explicitly study the dynamics and steady-
state solutions of our model for particular choices of
source distribution. For the dynamics, i.e. the transition
to steady state, we use numerical methods as described
in the electronic supplementary material, section C. As
alluded to earlier, we are particularly interested in the
lognormal distribution as it is ubiquitous in nature and

J. R. Soc. Interface (2005)

has relevance to recent experimental studies. We
contrast the lognormal results with those of a gamma
distribution, which has an interpretation as a more-
sophisticated form of age-independent model.

2.2.1. Lognormal distribution. The lognormal distri-
bution is defined as

L(l) = —\/Ql?sl exp <_7(1og(;)82— m) ) ;

where m and s are the mean and standard deviation of
the natural logarithms of the lifetimes, which are
normally distributed. The mean u= [ diIL(l) and

standard deviation o=/ [;° di(1—u)*L(l) of the life-

times are related to the mean m and standard deviation
s of the logarithms of the lifetimes via

= exp(m+s*/2),

(2.14)

o= \/exp(Q(m + §2)) —exp(2m + §%).

Lognormal distributions can arise from many small
multiplicative random events, through the multiplica-
tive version of the central limit theorem. The distri-
bution has a characteristic ‘long tail’, as seen in figure 2
for example. Many processes in biology are known to
follow lognormal distributions.

As described in §2.2 we calculate the steady-state
distribution of remaining lifetimes

—(m+52/2) 1 _
" e og(4) m>]
n(A) =—— |1 —erf[ ——— ||, 2.15
of total lifetimes

¢217 e (_ (log%— m? /2>’

pi(l) =
(2.16)

and the equilibrium survival curve

5(t) = % |:l—e(m+52/2)t<1 —orf <log(t\/)§s—m>>

(o=t ))]

V2s
(2.17)
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S(t)
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S(t)
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0.4 \

0 2 4 6 8 10
time (t)

Figure 3. Fits to equilibrium survival data for varying
lognormal source parameters. The circles are ideal data
generated from our model—i.e. points on the survival curve,
S(t)—and the solid lines are fits (exponential, double
exponential or linear). (a) m = 0.4 and s = 0.6: the survivor
data are fit quite well with a single exponential—a straight line
on the semilog graph—with 7 = 1.21 (solid line). (b) m = 0.4
and s = 0.8: the survivor data are fit very well by a double
exponential (solid line) with A =0.80, 7, =1.46 and
79 = 3.76. The two dashed lines are the two exponentially
dying components. The double-exponential fit is much better
than can be achieved by a single exponential (dotted line) with
7=2.19. (¢) m = 1.5 and s = 0.3: the survivor data initially
follows a linear decay (solid line—fit to data until ¢ = 4).

where erf(-) is the error function defined as the area
under the normal distribution from 0 to =,

2 (* )
erf(z) = —= | da’ exp(—z).
(@) =—= || as' oo
We illustrate the distributions and survival curve
obtained from our model in figure 2 for a particular
choice of parameters, m = 0.4 and s =0.8. As well as

J. R. Soc. Interface (2005)

the analytic steady-state solutions, above, we illustrate
the approach to equilibrium, starting with a lognormal
population, obtained from numerical simulation as
described in the electronic supplementary material,
section C. The distribution of remaining lifetimes
approaches equilibrium rather quickly, whereas the
distribution of total lifetimes takes considerably longer.

It is important to note that in contrast to the age-
independent model, the distribution of remaining
lifetimes with lognormal replacement changes in time.
Even so, the steady-state distribution that is reached
retains the long tail of the underlying distribution,
which has important implications for the survival
curve. This is quite a different phenomenon to
accumulating longer-lived cells in the population,
which will occur regardless of the underlying distri-
bution, even the exponential.

The survival curve in steady-state can look very
different for different parameter values. In figure 3 we
illustrate three distinct shapes for the survival curves
with different parameters. In each case we plot ideal
survival data (circles) generated from our model, i.e.
points on the survival curve, and fit common functions
to it.

In figure 3a, m = 0.4 and s = 0.6, we obtain a good fit
to the survival data with a single exponential until such
time as only about 1% of the original population
remains alive. If we were to fit for longer times we would
find that the single exponential would begin to deviate
from the survival data, and we would require a double
exponential to obtain a good fit. A single exponential,
which is usually the first function that one would
attempt to fit to any survival curve, fits well when s is
approximately the same, or only slightly larger than m.

In figure 3b, m = 0.4 and s = 0.8 (as in figure 2), we
show that a double exponential

S(t) = A exp(—t/71) + (1 = A)exp(=t/73),

is sometimes required to obtain a good fit to the
survival data even at intermediate times when a large
fraction of the original population remains alive. The
double exponential nature of the survival data is clearly
demonstrated by the two distinct linear regions on the
log scale. Such a curve might otherwise be interpreted
as evidence for two ‘subpopulations’, one dying-off
exponentially with time constant 7, (‘short-lived’) and
the other with time constant 75 (‘long-lived’). However
in our model the survival curve arises from a single
generative mechanism—there is no true division into
two subpopulations. Indeed if we fit to the survival data
over a longer time we would obtain a different split
ratio, A, and different time constants. A double-
exponential survival curve typically arises when the
standard deviation, s, of the logarithms of the lifetimes
is much larger than the mean, m, that is when the
distribution has the characteristic long tail as seen in
figure 2.

Finally, in figure 3¢, m = 1.5 and s = 0.3, we see that
the decay can look linear for short times. This situation
corresponds to a narrow distribution, i.e. when s is
much smaller than m that can look qualitatively similar
to a normal (Gaussian) distribution. In such cases the
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equilibrium distribution of remaining lifetimes is flat
initially, due to the cells’ ages being unsynchronized
together with only little variance in cell lifetime. See
figure 5 for an illustration of this type of distribution.

It is interesting that the survival curve obtained
from the lognormal age-dependent model in steady-
state can often be closely approximated by a single
exponential survival curve. Hence experimental evi-
dence for an exponential survival curve is not able to
distinguish the lognormal ‘fate determined’ source
population from a simple random loss from the mature
pool (age-independent death). A double-exponential
survival curve can also be explained in both models: as
two subpopulations with different half-lives, or derived
from a lognormal source distribution with a large
variance. However in contrast to the empirical con-
clusion of two subpopulations required in the age-
independent analysis, the lognormal age-dependent
model offers an appealing mechanism for the apparent
appearance of two subpopulations when no true
distinction exists.

It may be possible to acquire very accurate data with
many time points to help make a distinction between
the two explanations. To do so would require monitor-
ing the population in the long-time (small-remaining-
population) limit. If the lognormal explanation is
correct the best-fit double exponential will change
when fit to data over a longer time. If there is a true
division into two subpopulations with different survival
rates then the best-fit double exponential should
remain the same.

2.2.2. Gamma distribution. To contrast the lognormal
results we consider the gamma distribution as a
possible source distribution, L(l) = y(«,7,l). The
gamma distribution is defined as

1 exp(—1/7)

O , (2.18)

y(e,7,1) =
where I'(a)= [{"dzz*'e™ is the gamma function
(I'(n) = (n—1)! when n is an integer), and a€[1,»),
7€ (0,0) are parameters. The parameter 7 is a time-
constant that plays an analogous role to 7 in the
exponential distribution. The mean and standard
deviation of the gamma distribution are given by

M= aT,

c=+ar.
When « is an integer, n, the distribution can be
interpreted as the time taken for a cell to pass through n
‘compartments’ (for example phases of the cell cycle),
where the time spent in each compartment is exponen-
tially distributed with the same time constant 7.
This compartment approach is common in modelling
biological process and is a more-sophisticated form of
age-independent model. One might hope to capture
most of the features of a lognormal age-dependent
model with a gamma model as then one could resort to
the simpler age-independent approach to death rates.
However we will show that the gamma distribution
does not ever produce a double-exponential survival
curve as we obtained from the lognormal distribution,

J. R. Soc. Interface (2005)

so there is at least one unique feature of our lognormal
age-dependent model.

For a gamma source distribution with o« =n we
derive the steady-state distributions of remaining
lifetimes and total lifetimes, and the survival curve as
described in §2.2

« 1 n '
piR) == v(G72), (2.19)
aQ ‘7:1
pi(l) =v(n+1,7,1), (2.20)
and
_ LTt/
S(t) =1-— Z; G (2.21)
where =

T
I'(a,z) = J dz'z’*™" exp(—2'),
0

is the incomplete gamma function.

The fact that pi(l) is itself a gamma distribution
with « =n+1 illustrates that the total lifetime
distribution is skewed towards longer lifetimes
compared with the source distribution. This is true
even for the a« =1 (exponential distribution) case,
which is equivalent to the age-independent model,
despite the fact that the remaining lifetime distribution
does not change in time.

The remaining-lifetime distribution pj(A) can be
seen to be a sum of gamma distributions with a = j in
the sum, where j=1...n. This distribution can be
understood in terms of a compartment model by noting
that our model corresponds to differential equations for
the compartment populations, p;, £k=0...n—1 of the
form

dp(];it) — %(pk_l(t) —Prs1(t)),

(2.22)

that is cells passing from one compartment to the next
at rate 1/7, where the indices are interpreted modulo n,
so dying cells (i.e. those leaving compartment n—1) are
replaced in compartment 0. The steady-state solution
of these differential equations is clearly

pp =1/n, k=0..n—1,

i.e. all n compartments equally populated with 1/n of
the cells. The distribution of remaining lifetimes is
given by pij(4) in equation (2.19) because the cells have
anywhere from 1 to m compartments yet to traverse
(j=n—k), and those in each compartment have
remaining lifetimes given by a gamma distribution.

In figure 4a,b we plot the initial and equilibrium
distributions obtained from a gamma source distri-
bution with « =2, 7=1. Superficially, the gamma
distribution can look very similar to a lognormal,
especially for short time, for example the gamma
distribution plotted here looks similar to the lognormal
with m = 0.4 and s = 0.8 plotted in figure 2. However,
lognormal distributions typically have longer tails than
gamma distributions due to log(l) appearing in the
exponent of equation (2.14) compared with [ in
equation (2.18). This feature has important conse-
quences for the type of survival curve that can be
obtained with the gamma.
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Figure 4. Dying population with replacement from gamma source distribution—a =2 and 7 =1 corresponding to mean and
standard deviation of u=2, 6=1.41. (a) Distribution of remaining lifetimes in the population, p,(, t). The solid line is the initial
gamma distribution (¢ = 0), and the dashed line is the steady-state distribution, p{j (1) (— o). (b) Distribution of total lifetimes
in the population, py(l,¢). The solid line is the initial gamma distribution (¢ =0), and the dashed line is the steady-state
distribution, pij({) (— o). (¢) Exponential fit to ideal equilibrium survival data (circles—generated as points on S(t)). A double
exponential will not achieve a better fit of this data because d? log(S(t))/d#* <0 (concave down on the log scale).

For small « the survival curve derived from the
gamma distribution can be well-approximated by an
exponential. In figure 4¢ we show survival data taken
from our model and fit with an exponential on the log
scale, for « =2, 7 =1. The fit is reasonable for o =2
but becomes worse for larger a. Importantly, because

d*log(S(t))/d#* <0 a double exponential cannot give a
better fit than a single exponential in this case. Hence
we cannot interpret the equilibrium population as being
composed of two subpopulations, one short-lived and
one long-lived. In fact, it is possible to show that for
any a = n an integer, d” log(S(#))/d#* <0, so under no
circumstances is survival curve obtained from a gamma
source distribution better approximated by a double
exponential. This feature is in stark contrast to
the lognormal, which produces survival curves that
appear double-exponential when the standard devi-
ation is large.

3. DIVIDING POPULATION

We now turn to a related problem where times to cell
division (rather than death) vary according to a
lognormal distribution in a continuously growing cell
population. We are interested in finding the distri-
bution of ‘time until next division’ in the growing
population, where cells are dividing completely out of
synchrony, given that we know the distribution of
division times of newly divided cells. We will denote
this distribution D(-) and refer to it as the division-time
distribution—it plays a role analogous to the source
distribution in §2. The two daughter cells produced by
each division are assumed to have division times drawn
from the distribution that are completely uncorrelated
with each other, or with the parent.

This problem is very similar to the problem of cell
death with replacement from an external source
considered in §2. Cell division can be thought of as
cell death with two replacement cells (the daughters)
instead of one. Analogously, the two cell variables of
interest are its age, a, and total division time, d,
however we will find it more convenient to work with
total division time, d, and time to next division,
0 = d— a. The full problem is to find the evolution of
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the population density, P(d,d,t), describing the total
size of the population and the distribution of é and d
within it, given the division-time distribution.
Because the population will grow in time, unlike in
§2, P(0,d,t) is not normalized to one (which is why
we have capitalized it and refer to the population
density rather than the probability density)—the
normalization

N(t) = J: do J: ddP(6,d, t) (3.1)

is the total population at time t.
The marginals

Poa(6,1) = J ddP(6, d, 1),
0

Poa(d, 1) :J dsP(6, d, 1)
0

contain information of the total population size and the
distributions of time to next division

ptnd(67 t) = Ptnd(67 t)/N(t)7 (32)

and total division time
ptd(d7 t) = Ptnd(d7 t)/N(t), (33)

respectively.

The full model of division is presented in the
electronic supplementary material, section B. However,
analogously to §2 we are most interested in the
marginal density of time to next division and choose
to focus on it here. We may derive a differential
equation for its evolution

6Ptnd (57 t)

aPtnd (6a t)
at '

(3.4)

We will look for solutions to this equation of the form
Pa(6,t)= N(t)pia(6). Such a solution describes a
growing population in which the distribution of time to
next division has reached a steady state, p®,(9).
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From its definition we can derive a differential
equation for the normalization

dN(t d ®
3 R
00 aP, n (57 t)
= Jy do—"5—— ‘

at

aPtnd(67 t)

=[5 d6 [2D(8) Pa(0, t) + I

= Ptnd(07 t)a (35)
where the third line follows from equation (3.4), and
for the fourth line we have used the fact that
the population density must vanish at infinity,
Ptud(é_) @, t) = O
For a solution of the form P 4(d,t) = N(¢)p;q(0),
equation (3.5) becomes
dN (1)

T kN(t),

= (3.6)

with solution

N(t) = N(0)exp(kt), (3.7)

where k= p;}(0) is a constant that will be fixed below.
That is, the total size of the population grows
exponentially in a steady-state solution. This exponen-
tial growth of the total population size is exactly what
would have been obtained in a model where the
likelihood to divide is independent of age, i.e. constant
across the population. The difference in our model is
that the distribution of time to next division will not be
exponential as it is in the age-independent model.

With N(t) of the form equation (3.7), equation (3.4)
reduces to

dpsa(0)
@) s (5) + kD(6) = 0.

ol (3.8)

We solve this differential equation using an integrat-
ing factor

5

Paa(8) = ke® (1 —2J do'D(8")e ™ ) , (3.9)
0

where the constant of integration was determined by

self-consistency of the two sides of the equation at 6 =

0. The constant k= pi54(0) is determined by

r ds'D(6")e ™ =1/2, (3.10)

0
as is necessary for pf (60— ©)=0.

In the electronic supplementary material, section B,
we derive an expression for the marginal distribution of
total division times in steady state, p{3(d), by solving
the differential equation for the full distribution.

Analogously to the survival curve of §2, we define the
undivided curve as

Ut =1 —j A5puna (6, ), (3.11)
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which is the fraction of the population that remains
undivided at a time ¢ after the time of interest, ¢

We choose to illustrate our results for a lognormal
division-time distribution as there is recent experimen-
tal evidence for its relevance (Deenick et al. 2003;
Tangye et al. 2003). Results for a gamma division-time
distribution can also be derived and contrasted with the
lognormal, as in §2.

When the division-time distribution is lognormal,
equation (2.14), we were not able to find a closed-
form expression for the integral [?ds'D(6')e™ that
appears in equations (3.9) and (3.10) (6— o) in terms
of standard elementary or special functions. We can,
however, evaluate this integral numerically for
specific values of m, s, kK and ¢ using standard
numerical integration techniques. We can therefore
determine k= p},(0) and plot p{4(6) for specific
values of m and s.

In figure 5a-c we illustrate the steady-state distri-
butions and undivided curve obtained for the dividing
cell population. Also shown are the analogous distri-
butions and survival curve for the dying population with
external replacement. The division-time lognormal has
m = 1.5 and s=0.3, which were chosen to clearly
illustrate the difference between the distributions
obtained for the two cases. We see that the steady-
state distributions are qualitatively similar in the two
models, however they are slightly skewed towards the
division-time lognormal for the dividing model
compared with age-dependent death model. This effect
is due to contribution of recently divided cells on the
statistics of the growing population—it is a dynamic
steady state compared with a static steady state.

Finally, figure 5d illustrates the growth of the overall
size of the population, N(t), with time in a numerical
simulation. We see that after the initial transient time
N(t) grows exponentially, as expected from the steady-
state solution. Also the marginal distributions obtained
numerically in steady-state closely match the analytic
expressions. Hence we conclude that the system does, in
fact, evolve towards the steady-state solutions we
derived above.

4. DISCUSSION

During lymphocyte homeostasis cells lost through
attrition are replaced. Many models of lymphocyte
homeostasis assume that the probability of a cell dying is
constant across the population and independent of the
age of the cell. This set of assumptions yields an
exponential function to describe remaining lifetimes in
the population. In experiments examining lymphocyte
survival in vitro, cells removed from their homeostatic
environment follow exponential decay to a first approxi-
mation (Gett & Hodgkin 2000; Deenick et al. 2003).
However, more accurate experiments clearly show the
rate of loss to be skewed and closely fit to a time-sensitive
distribution closely approximated by the lognormal
(Hawkins et al. in preparation). This result caused us to
speculate that a similar timed, and possibly lognormally
distributed lifespan in vivo might lead to a steady state
where cell replacement was similar to the experimen-
tally observed exponential. Our goal, therefore, was to
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Figure 5. Dividing population with lognormal division-time distribution—m = 1.5 and s = 0.3. Initial (¢ = 0—solid line) and
steady-state (t— o—dashed line) curves are shown, as well as the analogous steady-state curves for the dying population
(dotted lines), for comparison. (a) Distribution of time until next division, initial lognormal distribution and p{,(6), cf.

nd

remaining lifetime, pjj (). (b) Distribution of total division time, initial lognormal distribution and pi§(d), cf. total lifetime, pj (1).
(¢) Undivided curves, U(?), initial and steady-state, obtained from the corresponding time-to-next-division distributions of (a), cf.
steady-state survival curve. (d) Growth of total population size, N(¢), with time in the dividing population. Note that the growth
settles down to exponential within a few division cycles of most cells (straight line on the log scale), as expected in steady-state.

ask whether at steady state the survival curves, or
equivalently remaining lifetime distributions, of each of
the models can be distinguished.

A time-sensitive distribution has numerous conse-
quences for development of models of homeostasis and
cell dynamics. Our results show that under some
circumstances the survival data from the age-depen-
dent model can be closely fit by an exponential and
therefore it will be difficult to make a distinction from
the age-independent model experimentally. Hence
fitting an exponential function to a survival curve
does not ensure the underlying assumption of random
loss in the pool is correct.

It is interesting that the lognormal steady state
curve can sometimes be closely approximated by two
exponentials, despite the single generative mechanism.
Such data would usually be interpreted as evidence for
two independent populations, each with their own
survival kinetic. If the source distribution is a gamma
distribution, which can often appear very similar to a
lognormal, this feature is not observed, thus providing a
quantitative test to distinguish the lognormal from
similar distributions. This result also demonstrates
that there are features of our age-dependent model that
cannot be captured within an age-independent model,
even a more-sophisticated one involving multiple
compartments.

The experimental implications for measuring turn-
over of peripheral naive T and B lymphocytes, for
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example by replacement with proliferating progenitors
after labelling with BrDU (Fulcher & Basten 1994;
Tough & Sprent 1994; Tanchot & Rocha 1997) are
currently being tested. It is interesting to note that
attempts to compartmentalize cells of different appar-
ent lifespans to different origins or history will prove
unproductive if lognormal replacement is operating.

It is also important to point out that T and B cell
homeostasis results from proliferation of mature cells in
addition to supply from a source such as the thymus.
Hence, the system we describe here cannot serve as a
complete model. Future models must combine a source
mechanism (either exponential or, as we have defined
here, a determined lifetime at steady state) with
proliferation of mature cells. Such a model is signifi-
cantly more complex as it must accommodate relative
contributions from both mechanisms as well as take
account of inheritance of lifetimes after cells divide in the
periphery. Further experiments must be performed to
distinguish the many theoretical possibilities. A unique
population that may closely follow our steady state
proposal are the antibody secreting plasma cells that
deposit into bone marrow following an immune
response. These non-dividing cells arise after each
immune response and hence have highly unsynchronized
lifetimes. The turnover of this population may provide
an excellent model for our steady state proposal.

Here we have focused on the lognormal as a possible
distribution for replacement in lifespan studies. This is
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based in part on experimental evidence but also because
the lognormal is found ubiquitously in nature (Limpert
et al. 2001), and commonly observed in variation of
cell behaviour. For example cell-surface-receptor
expression levels are typically lognormally distributed.
Lognormal variability is indicative of a series of
multiplicative events providing some potential insight
into the mechanism or manner of regulating and timing
cell responses, such as division or death. For example a
series of geometric steps as noted for triggering division
or the onset of apoptosis could account for lognormal
variation at the population level. Receptor-mediated
signals that alter expression levels of key proteins in the
geometric chain would be expected to alter the mean
time to an event, while ensuring the overall pattern of
variation is consistently lognormal. Further molecular
analyses of how variation is summed to trigger a timed
behavioural change may prove a fruitful area of research.

The exponential has proved to be a convenient
workhorse of many mathematical models. Our demon-
stration here that the lognormal steady state is, under
many situations, indistinguishable from the exponen-
tial, despite the quite different underlying philosophy
(that is, age independence or not) should challenge the
automatic adoption of constant rates of change in cell
behaviour where cells are unsynchronized in starting
time. For example we extended our lognormal frame-
work to the related problem of variation in cell division
times within a growing population, again motivated by
our recent careful measurement of the time of entry of
cells into division (Deenick et al. 2003; Tangye et al.
2003). Moreover our ability to obtain analytical results
demonstrates the somewhat surprising feature that time
and age-dependent approaches may not be prohibitively
complicated for modelling complex, multi-dimensional
systems, as may otherwise have been thought. We
anticipate our analytic formulae will prove useful for
extracting quantitative features of cell proliferation and
allow model parameters (mand sfor the lognormal) to be
determined from directly monitoring entry to division
by unsynchronized populations.

We suggest that the automatic adoption of constant
rates of change by cells as a starting point for
developing mathematical models may lead to errors in
biological modelling that limit the value of the resulting
model. Lognormal steady-state arguments may well
apply to other biological systems where constant (in
time and across populations or subpopulations) rates
are observed. We believe it will be profitable to further
explore time-sensitive regulation of cells, although
additional new techniques will need to be developed.

We would like to thank John Murray, Ruy Ribeiro and Tony
Bracken for helpful comments on the manuscript. We also
thank Carel van Gend, Rob de Boer and Alan Perelson for
stimulating discussions on the question we posed.
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